Medication related osteonecrosis of jaw – A medical oncologist’s perspective

HIS Darling¹,², S Viswanath², Randeep Singh³

¹Consultant, ²Senior Advisor, ³HOD, ⁴Dept. of Medical Oncology & Hemato-oncology, ⁵Medical Oncology, ⁶Artemis Hospital, Gurugram, Haryana, ⁷Army Hospital, R&R, Delhi, India

*Corresponding Author:
Email: doc_iaf@yahoo.com

Abstract
Medication related osteonecrosis of jaw (MRONJ) is a rare iatrogenic disease. Cancer therapeutics is advancing exponentially and apart from a major emphasis on quality of life (QoL) in metastatic patients, we now are foreseeing increased longevity. This necessitates the rising need of betterment of supportive care modalities and looking into the rare complications of therapy. Bisphosphonates (BPs) and Denosumab, the anti-resorptive agents (ARAs) used commonly by medical oncologists in cancers with bone metastases and less commonly in prevention or treatment of osteoporosis, are implicated in the etiology of MRONJ. Many a times, it goes undetected, underdiagnosed and untreated due to lack of awareness, low index of suspicion and paucity of understanding of this disorder amongst medical oncology fraternity. A high index of suspicion is a cornerstone of timely diagnosis and therapeutic action. A regular collaboration between treating oncologist and dentist is of utmost importance.

Introduction
MRONJ is a rare skeletal disorder affecting the jaw bone, mandible more commonly than maxillae. It occurs in the patients on long term bisphosphonates, denosumab and less commonly antiangiogenic agents. Being a very rare disease, it is hardly ever suspected initially. On the contrary, anti-resorptive agents are phenomenally used in oncology. Hence, it is infrequently seen in rare patients, albeit at advanced stages. Cancer therapeutics is advancing at a fast pace exploring the paradigm of increasing quantity of life. In this scenario, cancer supportive care has to match its steps to provide a better quality of life throughout. The current role of bone-modifying agents (BMAs) is primarily improving the QoL. As the survival of metastatic patients treated with BMAs increases, the incidence of MRONJ is bound to increase. Hence, better understanding of the molecular pathophysiology, clinical patterns and management of MRONJ is the need of the hour.

Background
MRONJ, is a rare but serious adverse effect of ARAs, which are widely used in oncology, and less commonly used in certain non-oncological diseases. It was first described in 2002.¹ Cancer patients with bone metastases require more frequent administration of ARAs than osteoporosis and other diseases, leading to a substantially higher risk for ONJ.²,⁵ ONJ was earlier known as BRONJ (bisphosphonate-related ONJ). Now being increasingly recognised to be associated with other agents like denosumab and antiangiogenic agents, it is now recommended by American Association of Oral and Maxillofacial Surgeons (AAOMS) as “MRONJ”.⁶

Definition — AAOMS, position paper 2014⁶
“Patients may be considered to have MRONJ if the following characteristics are present:

1. Current or previous treatment with antiresorptive or antiangiogenic agents
2. Exposed or necrotic bone in the maxillofacial region that has persisted for more than eight weeks
3. No history of radiation therapy to or obvious metastatic disease in the jawbones”

Common Indications of ARAs in Oncology: In a cancer patient, bone metastases can lead to multiple skeletal related events (SREs) viz local pain, fracture, hypercalcaemia or compressive myelopathy.⁷,⁸ BPs and denosumab, are BMAs, which significantly reduce the morbidity due to SREs in metastatic solid organ cancers, through osteoclast inhibition. They are also frequently used in multiple myeloma, and less commonly for hormone therapies related bone loss. In metastatic breast cancer, BPs has been shown to reduce the risk of SREs by 14%. Apart from improvement in QoL, median time to SREs is also delayed. Overall survival remains the same.⁹

Zoledronic acid
Bone metastases from solid tumors: IV: 4 mg q3-4 weeks¹⁰
Hypercalcaemia of malignancy: IV: 4 mg as a single dose. Can be repeated after 7 days.
Multiple myeloma osteolytic lesions: IV: 4 mg q3-4 weeks¹⁰
Osteoporosis treatment: IV: 5 mg once a year
Osteoporosis, prevention: IV: 5 mg q2 years
Prevention of bone loss with androgen deprivation therapy in prostate cancer: 4 mg q12 months,¹¹ breast cancer: 4 mg q6 months for 5 years¹²

Denosumab
Bone metastases from solid tumors: 120 mg q4 weeks
Giant cell tumor of bone: 120 mg q4 weeks; during the first month, give an additional 120 mg on days 8 and 15¹³,¹⁴
Hypercalcemia of malignancy: 120 mg q4 weeks; during the first month, give an additional 120 mg on days 8 and 15.

Multiple myeloma: 120 mg q4 weeks

Osteoporosis/bone loss:
Treatment of androgen deprivation-induced bone loss in men with prostate cancer: 60 mg as a single dose, q6m

Treatment of aromatase inhibitor-induced bone loss in women with breast cancer: 60 mg as a single dose, q6m

Treatment of osteoporosis in men or in postmenopausal women: SubQ: 60 mg as a single dose, q6m

Choosing between Bisphosphonates vs Denosumab:
As a general rule, BMAs are recommended for all cancer patients with bone metastases, with a few exceptions, viz. Oligometastases and limited expected survival. A meta-analysis of three phase III randomised trials comparing zoledronic acid and denosumab in bone metastases proved denosumab to be superior to zoledronic acid in risk reduction of a first SRE (hazard ratio [HR] 0.83, 95% CI 0.76-0.90) and in delaying the occurrence of a first SRE or malignancy related hypercalcemia (median 26.6 vs 19.4 months).

OS and PFS were similar with both agents. Similarly, a Cochrane analysis of three trials on breast cancer; denosumab treated women experienced 22% less SREs compared with bisphosphonate treated women (risk ratio [RR] 0.78, 95% CI 0.72-0.85).

Denosumab is easier and quicker to administer, as it comes much down below in the considerations to decide therapy. As a matter of fact, except for a few cancers with bone metastases, e.g. breast and prostate cancer, most of the solid organ cancers had expected median survival of only 2-3 years, with conventional treatment modalities. With the advent of newer modalities including targeted therapies and immunological drugs, the expected survival and QoL are improving. Hence, the ONJ risk needs to be thoroughly weighed against the choice of BMA. Nonetheless, we routinely ask for the history of previous BMAs, history of major dental procedures, any major dental ailments or any planned dental procedure in the near future. We perform basic dental and oral examination and in case of any obvious or apparent dental issue, an opinion of dental surgeon a dental surgeon is solicited.

Selecting High-Risk Cases: High risk factors can be local or systemic. In the local risk factors tooth extraction, dentoalveolar surgery, poor oral hygiene, jaw infections, dental implants and dental caries are to be looked for. In the systemic risk factors, apart from type, number and duration of BMA administration, anti-angiogenics, monoclonal antibodies, steroids, chemotherapy, RT, smoking, drinking, obesity, rheumatoid arthritis, hypocalcemia, hypoparathyroidism, osteomalacia, vitamin D deficiency, renal dialysis, anemia, and Paget’s disease of bone and uncontrolled diabetes are important.
Suspecting ONJ: The diagnosis of ONJ requires a very high risk of suspicion. Exposed or necrotic areas (symptomatic or asymptomatic) of jaw bone, persisting for weeks, months, or even years, are the hallmark of MRONJ.35 Symptoms occur when there is accompanying soft tissue inflammation. Early warning clinical features include prolonged painful jaw, loosening of teeth, non-healing tooth extraction site, bony enlargement, gum swelling, focal erythema and non-healing ulceration.35,37 Secondary infection can cause focal necrosis of surrounding soft tissue leading to fistula/e (Intraoral or extraoral). Inflammatory and necrotic process may damage/infiltrate nearby neurovascular structures causing neuralgia or bleeding. Mandible is affected two times more often than maxilla.32,38

Diagnosis of ONJ: MRONJ is a clinico-radiological diagnosis. The key to success lies in detection at the earliest stage possible. Any previous imaging studies must be retrieved, whenever feasible for comparison. There are no specific imaging features diagnostic of MRONJ. Various radiographic modalities used are panoramic X-rays, cone-beam computed tomography (CT), or magnetic resonance imaging. Early stages are more difficult to diagnose as the changes, viz nonhealing dental extraction sites, periapical fluid shadows and loosening of teeth, are not disease specific.39 CT better delineates focal bone sclerosis, mineralization, periosteal reaction and sequestra.35 Radionuclide bone scan is potentially useful in demonstrating early inflammatory changes suggestive of degenerating bone.40,41

Differential Diagnosis: MRONJ may mimic jaw bone metastases, chronic alveolar osteitis, chronic maxillary sinusitis, gingivitis/ periodontitis, caries, periapical inflammation, osteosarcoma, sclerosing osteomyelitis, and temporomandibular joint dysfunction. Osteoradionecrosis is the term used for similar phenomenon noticed in patients exposed to local radiation.

Staging34:

“Stage 0

Clinical Symptoms: no bone exposure/necrosis, deep periodontal pocket, loose tooth, oral mucosal ulcer, swelling, abscess formation, trismus, hypoesthesia/numbness of the lower lip (Vincent’s symptom), non-odontogenic pain

Imaging Findings: sclerotic alveolar bone, thickening and sclerosis of lamina dura, remaining tooth extraction socket

Stage 1

Clinical Symptoms: asymptomatic bone exposure/necrosis without sign of infection, or fistula in which the bone is palpable with a probe

Imaging Findings: sclerotic alveolar bone, thickening and sclerosis of lamina dura, remaining tooth extraction socket

Stage 2

Clinical Symptoms: bone exposure/necrosis associated with pain, infection, fistula in which bone is palpable with a probe or at least one of the following symptoms including bone exposure/necrosis over the alveolar bone (e.g. reaching the mandibular inferior edge or mandibular ramus, or reaching the maxillary sinus or mandibular ramus or the cheek bone), which result in pathologic fracture, extraoral fistula, nasal/maxillary sinus fistula formation, or advanced osteolysis extending to the mandibular inferior edge or maxillary sinus.

Imaging Findings: osteosclerosis/osteolysis of the surrounding bone (cheek bone, palatine bone), pathologic mandibular fracture, and osteolysis extending to the maxillary sinus floor.”

Treatment of ONJ: Treating ONJ is the most challenging part. There are no evidence based guidelines. Prevention is always easier than cure. As per AAOMS guidelines, in patients at risk of MRONJ, observation and education is recommended. In stage 0, conservative management with analgesics and antibiotics is appropriate. Stopping the BMAs needs to be considered at stage 1, alongwith application of mouth-rinse. Surgical debridement is the mainstay in stage 2 and 3, apart from use of long term antibiotics and other supportive measures.26

Role of Oncologist after the Diagnosis of MRONJ: A cancer with multiple bone metastases is an incurable scenario. Hence, every medical decision is intended to preserve/improve the QoL. For a local pathology like MRONJ, cancer treatment should not be stopped, if patient is otherwise fit. Hence, cancer and MRONJ treatment will go hand-in-hand. Unless dental/maxillo-facial surgery is not planned, most of the time the patient will be under the care of a medical oncologist. The combined goals of treatment shall be continuation of oncologic treatment and preservation of QoL. Patient shall need reassurance, control of pain/secondary infection, and prevention of extension and development of new areas of necrosis. These can be
achieved through collaboration with the dental surgeon. He may advise maintaining optimal oral hygiene, administration of systemic antibiotics, mouth rinses with chlorhexidine and frequent dental inspection.

Prevention of MRONJ: Starting a BMAs is never an emergency except for severe hypercalcaemia of malignancy. Hence, baseline dental and oral examination prior to initiation of BMAs must be considered.

1. Required dental procedures should be performed prior initiation of BMA.
2. Maintain appropriate oral hygiene
3. Avoid dental extraction or surgery to the jaw when possible, during BMA administration
4. When unavoidable application of minimally invasive surgery is preferred
5. Frequent monitoring by a dental care provider during and after BMA administration
6. Ensuring drug holiday around the procedures

Drug Holiday: Drug holiday in BMAs means withholding the drug for a sufficient safe time before and after a dental procedure to allow complete healing, minimising the risk of MRONJ and without compromising the benefits of BMA therapy. All three goals may not be completely fulfilled and moreover, we have incomplete knowledge of the subtle nuances of pathophysiology of MRONJ. Apparently, the concept of drug holiday holds more relevance in the context of bone metastases, where the administration is more frequent. BPs are deposited on the osteoclast-bone matrix interface for long time, a short-term withdrawal is unlikely to prevent MRONJ. Logically, it may be worthwhile for denosumab, as it causes reversible osteoclast inhibition. Ideally, all dental treatments should be completed 2 weeks before starting antiresorptive treatment. The American Dental Association suggests that the incidence of MRONJ in patients with osteoporosis is at most 0.1%, and suggests that the benefits of BMAs for fracture prevention outweigh the risks for MRONJ. Discontinuation of BMAs is unlikely to reduce the risk of ARONJ, but will increase the negative effects such as increased fracture occurrence. AAOMS recommends that, for patients receiving ARAs for longer than 4 years and who have low fracture risk but potentially high risk for MRONJ, discontinuation of BMAs for approximately 2 months before invasive dental treatment should be considered. If fracture risk or bone metastasis is well-controlled, resumption of BMAs is recommended approximately 2 months after the invasive dental procedure, when the damaged alveolar bones are expected to have healed.

Max duration of BMAs: Minimum duration necessary for administration of BMAs is 6 months to obtain a significant fracture risk reduction, in cancer patients with bone metastases. Treatment can be continued indefinitely in the absence of excessive toxicity. Their analgesic effect makes these useful even in hospice setting.

Prognosis: 60% the MRONJ patients can be adequately treated with oral rinses and antibiotics, with 40% requiring oral surgeries including sequestrectomy, debridement, or extraction. The culprit drug must preferably be withheld at confirmation of the diagnosis. Reinitiation may be considered on complete mucosal recovery. Complete resolution rate is 40% for denosumab compared to 30% for zoldronic acid.

Does this Affect Cancer Survival: Per se, no patient of cancer will generally die due to MRONJ. Nevertheless, studies have compared the survival of patients on BMAs with and without MRONJ. In a matched non-randomised comparative cohort study on patient databases in Denmark, among the matched patients, MRONJ patients experienced reduced survival, with an adjusted mortality rate ratio of 1.31 (95% CI: 1.01-1.71). ONJ may be a marker of advanced disease or survival-related lifestyle characteristics.

Oncologist-dentist Partnership: Rarity of the disease and incomplete understanding of the nature, etiology, pathophysiology, treatment and course of the disease necessitates the need of a better understanding, collaboration and frequent interaction among dentists and medical oncologists.

Future Directions: Although first case of MRONJ was reported in 2002, still our understanding of its epidemiology and pathophysiology is limited. Despite having a different mechanism of action, the newer anti-resorptive agent, denosumab, has also shown the same incidence of MRONJ. In this molecular era, we shall undoubtedly invent newer antiresorptive agents, with distinct pharmacological properties, and possibly less occurrence of ONJ. Nevertheless, we need to have better understanding of the risk factors and pathogenesis of ARONJ are crucial. Standard guidelines for stopping, withholding and restarting BMAs in cases of any planned dental procedure and MRONJ are yet to evolve. Prior to initiation and during continuation of anti-resorptive therapy, Vitamin D and serum calcium levels ought to be carefully maintained. Both categories of BMAs cause hypocalcaemia (higher with denosumab). It may be worthwhile to look into the association between prolonged hypocalcaemia and MRONJ, for which no major studies are available, although it may not be ethically possible. The unresolved problem of MRONJ invites closer and frequent multilevel collaboration between medical oncologist and dentists to achieve greater prevention and better oncological care.

Conclusion

MRONJ is a rare, non-fatal and probably thus underexplored realm. It’s complicated pathophysiology undermines the need of better patient education and dental evaluation at the beginning of BMAs. As the advent of better cancer therapies are going to expand
the therapeutic armamentarium and eventually improving the quality and quantity of life, medical oncology fraternity also needs to sensitize and update itself regarding this entity.

References
or multiple myeloma: Results from three phase III trials (abstract). J Clin Oncol 31, 2013 (suppl; abstr 9640).
33. Eleutherakis-Papaioannou E, Bamias A. Antiresorptive treatment-associated ONJ. Eur J Cancer Care. 2017;00:e12787.